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A IMraci:  We extend the analysis of the ac.curac.y of Intcrferometric  SAIL (InSAR)  for
topograp]lic  mapping to cover a variety of topics which have not hecn previously examined
ill the literature, These  jnclude deriving the position measurement sensitivities for arbitrary
intcrfcromctm  ,geolnetrics, scatterer distributions, point target responses, and for lnSARs
using frequency diversity (following the proposal of Gatelli et al. []] ). ‘1’he  relative merit
of single frequency and two-frequency InSAR  systems is discussed, and the superiority of
the latter is sbow]i  qualititativcly.  I’he effect of tropospheric propagation is also considered
and it is show]i  how this may be incorporated easily into the standard lnSAR  processing.

1. In t roduc t ion

IlltcrferoInetric  SAIL (In SAR) k one of the most promising techniques for obtaining very

high resolution and accuracy topcl,graphic  data from space and airborne instruments. Unlike
]norc lnature methods, such as stereo photography, the technique is still in its developlnent
stage.  one of the current advantages of stereo photography data is tliat  its limitations are
well understood and formal Inap errors can be derived. To advance InSAR  topographic
lna}~pillg  to the same level, it is important to u~lderstand its inherent capabilities and
lilnitations. ‘J1hc first systematic investigation of IIiSAR errors was performed by I,i and
Goldstein [2]. Subsequently, Rodriguez and Martin [3] presented a refined analysis which
included the effect of volume scattering.

‘l’he purpose of this paper is to present a systematic analysis of the InSAR  error budget
for airborne systems includi]lg  various eflects prcvious]y igllorcd, ITI the first and seco!ld
scctiolls, wc derive the illt,erferorneter positioning equations and their sensitivities for all ar-
bitrary ilnagil)g  geometry: “squjnted”  SAR processing and arbitrary interferolneter  baseline
oricnta.tions are allowed. Most of the error sources identified in these sections have a simple
geolnetric  i)ltcrprctatioll  and are IIot intrinsically related to the scattering characteristics of
the il[ia.ged  scene. ‘J’his  is IIot the case for the illtm-ferolnctric phase, and we devote the next
three  scctiolls to exa.lnillilLg  this error source in detail. We extend the prevjous analyses to
illcludc the l)ossibility  of using a two-frequency intmferometric  system, following an idea
illtroducec]  by Gatelli et al . [I], and contrast the perforlnance  of this method against more
traditjollal  si]lglc  freque]lcy interferometers. Finally, we examine the effects of the tropo-
s~)hcrc  On I]LSAR performance and show how the illterfcromctric  equations may be changed
sim})]y to account for signal delay and ray belldillg.

2. ‘1’he lnterferometric  Equations

An lnSA R system determines the positio]l  vector of a pixel given the following nlea-
surc]ncnts:  1 ) 779, the position vector of a point, which we take to be half way between
the two interfcro]neter  antennas (see figure 1); 2) F+ and F_ , the electromagnetic paths

lengths to a resolution cell (including ray bending)  from the two interfcrometric  antennas;
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3) d’, the illterferometric  phase difference; 4) l;, the interferornetric  baseline (the conven-
tion used is that F+ == l; + F_) ; and, 5) ti, the platform velocity. It is convenient to define
F == (77+ -+ ?– )/2 as the vector from the rcfcrcnc.e position to the resolution CCII,  and it as a
unit vector pointing from the rcfcrcncc  point to the rescdution  cell (SCC figure 1).

‘lTlicse measurements, together wit}L  the following auxiliary equations

)nust be usc.d  to dcter)nine  the line of sight direction to the pixel, fL, and the geometric
raltgc,  T. in the previous equations, k is the wavcnumber,  and jIj is the Dopp]cr  frequency.
Given it and r-, the position vector to the resolution CCI1, F~, can bc obtained by means of
the cquatioll

(4)

l’or lnost airborne  applications, terms of order (lJ/T)3  and ray bending may bc ignored

whcm co]lsiclcring the illterfcromctcr  sensitivity. in this case, the first two intcrfcromctric.
equations lnay bc writtcm as

?l jI)
i-1. ti = –=.f–k

(5)

(6)

An intm-fcrometer  location algorithm based on these equations was first presented by Mad-
SCII et al. [4]. IIclow, wc shall show that the effects of tropospheric propagation do not
significantly c}langc  the form of these equations. We will use the simplified equations in our
subsequent analysis since the usc of the exact equations adds unnecessarily to the algebra
without co]ltributillg  to physical understanding, or, in any significant way, to the numerical
accuracy of the error analysis.

‘J’})c  illtcrferolnctric  positioning equations can be given a geometric interpretation: equa-
tions ( 5 ) and ( 6 ) define two cones with axes in the l; and J directions, respectively. A
point  in three dimensional space is defined as the 10C.US of intersection of the two cones and
the s})hcrc of radius T. l’his locus is IIot ulliqucly  defined: ill genera], the cones intersect
along two straight lines starting at the origin, symmetric about the plane spanned by l; and
0. ‘1’he i]ltcrscction  with the range sphere occurs at two points. l)iscrimination  between
these two points  is accomplis}led  by specifying which side of the 1~-ti  plane the point occu-
~jics.  Matllclnatically,  this is reflected by the fact that equations ( 5 ) and ( 6 ) dctcrminc

two c.oll}ponellts  of i: the ones in the plane determined by the baseline and velocity vectors.
‘J’hc third c.omponcnt  is specified (up to a sign) by requiring the look direction be a unit

vector.
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3. lnterferometric  Sensitivity Equations for Arbitrary Geometry

l’ro]n equation ( 4 ), the error in the intcrferomctric  measurement can be written as

‘]’hc first two error  sources are simple to characterize. ‘l’he first one corrmpollcls to a shift

ill the coordinate system; the second to a tilning  error.
It is clear that ally errors in the baseline or velocity which do not affect equations ( 5 )

and ( 6 ) will liot introduce positioning errors: i.e., the interferometer is insensitive to errors

whit.}] are perpendicular to ii. g’his implies that for a sidelooking system, speed errors will
I]ot introduce positioning errors. Similarly, if the antenna baseline is orthogonal to the look
direction, a dilation of the baseline will not introduce positioning errors (to the accuracy

of the previous equations). q’his is of great practical advantage since it implies that one
need oIIly  c.o]lcern  oneself with the co~nponellt  of the error along the look direction when
dm.ignillg  a basclille or velocity monitoring syste]n. in additio]l,  it greatly simplifies the
form of the sensitivity equations.

Characterization of the last error source can be made by noting that, since i is a unit
vector

/i fl. r’L=o (8)

]Ience, errors due to this ter~n must lie in a plane perpendicular to the look direction.
‘J’lic error c.a~l bc further chara.ctcrizcd by specifyi]lg  the error source: phase error, velocity
error,  or baseline error. The measurement of interferometric  phase and platform velocities
are illde~~elldent.  l)iffcrcntiating  equations ( 5 ) and ( 6 ) one obtains, respectively

‘J’ogcther  with equation ( 8 ), the first equation  implies that an error due to velocity errors
must bc simultaneously perpendicular to the look and the baseline directions. I’his condition
is only satisfied if the position errcm lies along the axis defined by the vector ri x l;. Similarly,
an error in the baseline will induce a position error which lies on the axis defined by the
vector fl x 0, A simple co]lseque]lc.e  of these results is that if the look direction, the baseline,
a~ld tile z axis arc coplanar, an error ill vcloc.ity  will not produce an error in height (but
will still produce an error in location).

‘1’lle cllaracterizatio]l  of position errors due to phase errors is aided by the following
relatic]n,  which is obtained by taking the total derivative of equation ( 6 ), and noting that
the IIopp]er  frequency is set arbitrarily
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!.e., there will be no error along the velocity direction unless there is a velocity error. Thus,
a phase error must induce position errors which are simultaneously perpendicular to fl and

ii. This implies that the induced position errors must lie on the axis defined by the vector
;L x ii; i.e., o]] the same axis as baseline errors.

‘J’hc geometric characteristics of errors  in tt due to errors in the wavellunlber,  k, or ,
equivalently, in the speed of light or wavelength, are not as apparel~t from the ~)revious
cquatiolls  as those for velocity and baseline errors. Nevertheless, it can be argued that this
error  ]])usi,  satisfy two rcquirelnents:  first,  as with the other errors, it must be pcrpendic.u]ar
to the look direction; second, if the look direction is perpe]ldicular  to the baseline, the phaie
difl’ercnc.e  is zero, independent of the wavcnumbcr. q’herefore, this error will be ]ninimized
as the look direction approaches the direction normal to the baseline, when the phase error
is least  sensitive to the wavenumber  chosen.

Appendix A presents a detailed derivation of the sensitivity equations which include the
eflcci,s  outlined above. The final result is givcll  by the vector equation

. .
where h = 1~/lJ is the ulLit  vector along the baseline direction. ‘J’his  form clearly shows
that an error,  til~, in the baseline is completely equivalent to an error in the phase given by
60  =. kii . dl~. It also shows that when the look direction is along the direction fi x ~, the
l)ositioll  error is independent of wavenumbm,  as was argued previously.

The determination of positioning, velocity, and baseline errors is conceptually straight-
forward, although often difficult ill practice. Up to a factor, which is roughly of unit
magnitude, the previous equaticms show that the fractional position error, ldFo/T\,  is of

tile salnc order as lf~ . $7{, Ift . *I, or dFa/r. For geologic airborne applications, a typical
rcquirclnent  is 16F9/Tl w 10 - 4. 1(’or spaceborne applicatio]ls, this requirement is even more
strin,gcnt: 16Fg/rl w 10- 6. It is clear that these requirements place great demands on the
IIavigatio]l  and baseline determination sensors,

4. lnterferornetric  Phase Noise

Unlike the geometric terms, whit}] are inherent to all triangulation schemes, the phase
error is intrinsic to the InSAR  technique and wc devote the next three  sections to studying
it in detail. The phase error can be divided into systematic and random components.
Systematic errors can be caused by systematic changes in the electrical path traversed
by the illterfer,ometric  signal, or by eflccts intrinsic in the observed scene, such as noll-
homogencous  scenery or penetration in a vegetation canopy. q’he former type of error is
straightforward to ullderst,and and model. Typical sources arc radome inhornogcneities

lnulti-path  effects. We deal with the latter source of error below.

or
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l)UC to speckle and thermal noise in the return signal, the interferometric  phase contains
random  errors. in Appendix B we show that, for homogeneous targets, the maximum
likelihood estilnator (Ml,};) of intcrfmomctric  phase is given by

[

( (k) * (k)]m >j:~l v+ v_ )& = arctan  — – — –  .- -iiq–~(i)

(lie ~fil v+ v. ) 1
(13)

where NI, is the ]Iumbcr of looks to bc averaged.

Appendix 11 shows that the Cramer-Ra.o bound for tllc phase standard deviation is given

LY

((* - (a))’)’/’ = .&Ny-@: 72, -7
(14)

where -y is the correlatioll  between the signals in the two intcrfcromctric  channels. ‘l’he most
important characteristic of this equation is that the phase noise is only a function of t}le
number of looks and the correlation between tllc two illterfcrolneter  channels, which will be
dm-ivcd  below.

‘J’hc M 1,1; estimator is unbiased, and the phase  variance can easily be obtained numeri-
cally, as shown by I,i and Goldstein [2]. l’igurc 2 presents a comparison of the actual phase
standard dcviatioll against the Cralner-llao bound for various values of the correlation. As

‘)” for the firstcan be seen, the phase standard deviation decreases much faster than NI,
four looks, ‘1’he fact that this happens more quickly for two looks whrm the correlation
is low is duc to 27r ambiguity in the phase. As the nu~nbcr of looks increases, the higher

correlated cases approach the asymptotic behavior more quickly. After four looks, the phase
standard deviation is well al)proxilnated  by the Cramer-Rao  bound.

5. ]nterferometric  Return Signal Characteristics from Distributed Targets

We consider an interferometer system with geometry as depicted in figure 1. We assume
olle translnittcr  and for each of the interferolneter  receivers, wc model the interferolneter
coherent signal, vi (i =. :, –), for range r. and cross raligc coordinate Xo, by

v+ (To + A/2, Zo) =
J/

A & d,q ~- z~h ‘~ j(Z, y,.Z)W+(To  + A/2  - -  T+, xo - z) i n+

//
v_(ro  – A / 2  +  J,,zo + 6X) = A  d,z dS  e-ik-(r++’-)f(z,  y,z)

W_. ((TO – A/2 -i 6,)  – T_, (xo+ Jr) – z) 4- n_ (15)

where ?~i is the therms; ]Ioise contribution} to the signals, cfS is the infinitesimal area elelnent
o]l tllc plane perpe]ldicu]ar  to z, ki is the wavenumbcr  (= 2~/Ai)  for tllc carrier frequency at
each rccivcr,  Wi(r,  x) is the systeln’s range  cross-range point target response, r; represents
t}lc  rallgc froln the i~h antenna to the scattcril[g  point, and A is a colistant  which depends

5



on the system parameters. We have assumed that both signals arc offset by a deterministic
range  +A/2 so that t} Icy will be corcgistered  in range,  We have allowed for the existence of
range  and azilnuth  corcgistratioll  errors, /ir and 6 ~, respectively. We have also allowed the
possibility for different carrier frequencies at each receiver. This can be achieved either by
utilizing different parts of the transmitted bandwidth, or by translnittillg  and receiving from
each antenna at diflcrcnt  frequencies (ill which case the term r+ -I T_ becolncs 2T_ ). l’inally,

we have assumed that the scattering characteristics do not change across the transmitted
balldwidtll.

Very often, single scattering (one bounce) is the dominant scatterilig  mechanism from
llatural  targets. We postpone the detailed treatment of multiple scattering for specific media
and treat single scattering only ill this paper. IIowevcr, the effect of multiple scattering can

be understood qualitatively. When o]lly one transmitter is used, it is not difficult to convince
ollcsc]f  that, for a simple multiple bounc.c  scattering mechanism where the path length is
identical for both signals utitil  the filial  scatterer, the interfcromctric  phase lncasured  is the
salnc as that due to tile final scatterer alone, ‘1’hereforc the lnSAR  will estimate the look
direction from this scattering event as being the direction to the last scatterer. IIowcver,
duc to the additional distance travelled  by the rays, the return will bc placed at a greater
range than the return from the last scatcrer. q’he magnitude of this range error depends
oIi the lc~}gth  of the scattering path, which is a strong  function of the scattering medium.
l)ue to the reciprocity of the electroma,gnctic  field (which only app]ics  approximately to the
seco~ld  receiver), for any silnp]c multiple bounce path that colitributes  to the interfcrometric
phase there will also be a contribution from the time reversed path. ~’his  will cause the final
intcrfcrometric  phase to bc an average of the illterferomctric  phases due to scatterers at the
c]lds of t}lc scattering chain, thus setting the angular clcwation  equal to one corresponding
tc) a. point  between these two points. When two transmitters are used, there is an additional
~)llasc contributio]l  which acts as a noise term and is not as easy to interpret.

‘] ’hcsc considerations motivate us to assulne that tllc surface scattering amplitude,
~(x,  y, z),  obeys the following equation

(j(~, Y,~)j*(~’, Y’, z’)) = CJcl(x,  y, -2, O)d(x  -- x’)6(y - y’)d(z - z’) (16)

where CJo(z, y, z, 0) is the norlnalizcd  backscatter cross section per unit height for incidence
allglc 0. Notice that the more common ltormalized radar cross section is defined as

C70(z, y,e) =
J

d.z C70(z, y,z, o) (17)

If the SAR coherent return signal has circular Gaussian statistics, as is often observed,
a comp]cte  characterization of the
c.omplcx  covariance  matrix for v+

intw-ferometric  return can be obtaillcd  by calculating the
and v... using  equation ( 16 ), and the fact ?Z1 and ?Lz
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arc ulLcorrelated, the complex covariance of o+ and ?J_ is given by

(v+ (TO -t A/2, ZO)V1(T0  -  A/2+ 6,, x0 +- 6T)) = IA12 /dz / dS  OO(Z, y, z, O)exp[-  ik. (r+ - r. ) ]

CXJ) (–i26kr+)~V~(To  + A/2 - T+ ,x. - z)

W:(ro - A/2+-  & -- T+, xo+ 6, – z) (18)

where we have defined the wavcllumlmr difference as dk = k+ -- k_.

‘1’o lnake further progress, we expand about To and approximate

(19)

(20)

where I)P is the projection of the interfcrometric  baseline onto the direction perpendicular
to tllc look direction, and F = 7.+ tiFo . llquation  ( 19 ) makes it apparent that locally there
is a phase difference between  two points only if their separation vector is non7,cro  in the
1~/[1~1 direction. We decompose the scatterer height locally into a tilted plane component
and an additional componcnent,  Z, representing the height above the mean tilted plane

2=ztan  TT+ytan TV+Z (21)

wllcre the coordinates z, y, and z are measured from the expansion point, and T* and Tv
represent the surface S1OPCS in the z and y directions, rcspective]y, and we assume that the
scatterer properties are only governed by their height above the mean tilted plane

00($, y,z, eo) == ao(z,eo) (22)

We expect  this assumption to be good for most natural targets which have no sharply
dcllncd  cllallges  in surface brightness, ‘1’his assumption is not as good for some inhabited
areas,  where sudden changes in the reflectivity are common, and wc consider another model
below to study these cases.

After some algebra, equation ( 18 ) can be integrated analytically to obtain the complex
covariallce. It is given by

&( K.) ==
J

C/x exp [- i&q a(z) (24)

k+ BP
Kr = _—. (25)

TO tan(OO ~ Tv)

(26)
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d ) is defined asand the func.tlon I’(Kr -1 26k, KZ tan~r, dr, ~

where ~i(til, K2) is the l’ourier transform of }+’i(r, x) defined as

Notice that when two translnittcrs  are used, the oILly difference ir~ the previous forlnulas  is
that k+ must be replaced by k+. +- k_.

‘1’he  ~]hasc  of the interferometric  product lnust  be ccmrected  for a range dependent term
if 6k # O. q’hc expression derived above also shows the phase biases illtroduced  by errors
in alignment, of the two interferometric  images, as well as errors introduced by the presence
of volumetric scattering,

Assu~ning that the return power for each pixel is the same at both receivers the corre-
lation coefficient  between the two signals is given by

whcro SNl{i is the i’th system’s signal to noise ratio. l’hc  correlation is the product of
a .gcolnetric  correlation function, ‘)’G, which is purely a. function of the shape of the pixe]
illumination function and the registration error, a correlation function, Yz, whic}l  dcpellds
ON the vertical distribution of scatterers, and a correlation function, TN which is purely
a func.tioll  of the thermal noise. Notice that ill prillcip]e  7G and 7N can be determined
through calibratio]l  and from the estimated topography. !l’his  means that, if the complex
correlation (including phase) is measured, the complex correlation 7Z can be determined
up to an overall phase and, since it is proportional to the l’ourier transform of the vertical
distribution of scatterers, this distribution can be recovered if enough incidence angles and
baselines are obtained. A more detailed analysis of this inversion will be presented elsewhere.

Notice that, in prilicip]e, lnultip]icative  Iloise factors, such as the phase noise due to
the sidelobes of other targets (lS1,R or integrated sidclobc ratio noise) are automatically
included il[ 7G if the surface is homoge]leous. Ill practice, scene illhomogeneities  or topo-
graphic features ]nay introduce additional phase biases and, possibly, decorrelation.  This
situation will be treated below.



‘l’he geometric correlation function is the extension of the usual van Cittert-Zcrnike
theorem [5] to scatterers distributed in three dimcnsiolls. As was first noted by 7,cbker
and Villasenor [6], when t.}Le carrier frequmlcy is the same for both  reccivcrs,  the geolnetric
correlation cocfllcicnt  is proportional to the col[volution  of’ the 11’ourier  transform of the two
~~oillt target response functions. ‘l’he source of t}le geolnetric  decorrclation  term is the fact
that the speckle observed at different allglcs is dccorrelated.

Gatel]i et aJ . []] first proposed that the same speckle pattern could be obtained at two
difrcrent a.ligles  by requiring  tl[a.t  the projected wavenu]nbcr  on the surface be constant.
‘J’his  results in points at t}Le same height having t}le same intcrferomctr-ic  ~Jhase difference
(but different slant range). ‘J’his  is seen from equation ( 27 ), which shows that maximum
correlation is achieved when iir = 6T = O and Kr = —26k. Neglecting the effects of surface
tilt, and misregistration,  whc]~ this condition is satisfied the geometric correlation factor in
ecluation  ( 28 ) is equal to one and the o]lly contributors to tllc phase noise are 7Z and 7N.
AJI additional advantage of making this choice is that misregistration in range will not induce
ally height errors. In fact, we show in Appendix C that when Kr = —2dk these advantages
will persist in the presence of an arbitrary distribution of surface scatterers. Although these
co]lsiderations  show t}lat selecting two frequencies is desirable, it is impossible to match the
frcqucllcy difIerencc across an image since the projected wavcnumber  c}langes  as a function
of range. ]n practice, one must subdivide the scene illto segnlents  for which the match is

adequate.
‘J’o i~nplcment  the procedure proposed by Gatelli et al . [1] given a single transmit

bandwidth, onc must truncate the spectra of the two received signals to synthesize a carrier
frequency diflcrcnce. “J’his spectral truncation will result in a degradation of the resolution in
the range  direction. When the amount of spectral overlap (defined as 1- K,/Ak, where Ak
is the translpit  wavenumbcr  bandwidth) is small, this may result in a significant degradation
ill the achievable range  resolution, As an alternative to t}lis procedure, one may apply a
window to the return spectrum. This will reduce the point target response (ptr) sidclobcs,
at a modest cost in the range resolution, thus increasing t}le geolnatric  correlation, ]n

Appendix 1) we study the optimal windowing function and show that, when the spectral
overlap is close to one, it is given by half a cycle of a cosine function. A comparison of the
correlation properties of various windowing functions is prcxxmted  in figure 3. This figure
shows that when the spectral overlap is large,  windowing the data can significantly increase
the correlation, while, for small spectral overlaps, it is better not to apply any windowing.

‘J’he results shown in figure 3 were obtained assuming an ideal point target response,

in practice, SAR processors will produce responses with features which arc not present
ill the ideal case: the range and cross-range sidclobes  will decay at a slower rate; perfect
colnprcssion will not be achieved resulting in the presence of energy in directions different
from the range and cross range; finally, due to finite sampling restrictions, ambiguities
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will appear away from the main peak. Figure  4 presents a typical point target response
obtained by simulatioli  of the J]’],  ‘1’OPSAR system [7] after compression with a seismic.
lnigration  l)roccssor [8]. All of the effects mentioned above are apparent in this figure.
Using equation ( 28 ), one can calculate the correlation properties of the interferolnetric
return, and these are presented in figure 5 for both  weighted and unwcighted  returns, As
can he seen, the result of theprcvious  features (which collectively contribute tothclSl,l{)
is to dccrcasc  tho correlation by an almost constaut factor. q’}lis is similar to what would
be exl)ccted if the 1S1,1{.  colltributiol[  were an uncorre]ated  noise source. q’he results for
a range-l)opplcr processor such as the ono USCC1  by Madsen et al . [4] are quite similar,
although, due to the slightly higher IS1,R, there is a slnall  decrease in the correlation.

]n order to make a comparison of the relative merits of the approaches presented above,
one must take into account the fact that windowing or spectral truncation will increase the
geometric correlation but  degrade the resolution, If one assumes that all results are averaged
to the satne resolution by averaging in the range direction, one obtains the following results
for the phase noise for the weighted and spectral truncation methods respectively

____~ (
2

(w) _  ~(a) I ‘“ W7Y’)7N_)_
UQ —

J2N; 7ZT:W)7N
;

(29)

~1 ‘-  (7z7iv)2(7’) ~ __.l_.  ~= .=== -------- .—.-—u~
w K,~AKJ NI, 7Z7N

(30)

where R(a) is defined in Appendix C. Figure  6 show the ratio of the last two variances

against  tll~  variallcc for the unwcightcd,  high resolution data. It is clear from t}lcse  re-
sults that the windowing will only significantly improve the phase variance when the SNR
slid spectral overlap are both high, while it can actually slightly degrade performance for
small values of SNR. On the ot}ler  hand, despite its loss of resolution for small spectral
overlaps, the spectral truncation method provides a significant reduction  in the phase noise
throughout all the parameter space considered here.

‘J’he optimum frequency difference is a function of surface slope, which is not kliown  a
priori, and a degradation in correlation will occur when the actual slope is different to the
one used to estimate the frequency difference. ‘1’o minimize this degradation, one can weight

the return spectrum, as discussed above, Since the typical slopes found in natural terrains
arc IIot extremely large, so that the spectral overlap remains large, a simple half-cosine
weighting should be adequate, }Jigurc  7 shows that for radar parameters typical of airborne

radars (15kln  range, 40 degree incide]lcc  angle, 2m baseline, 40MIIz bandwidth) this type
of weighting call  Inake the geometrical correlation cocflicicnt  almost unity for wide range  of
slopes.



6. Effects Due to Scene Inhomogencity

‘1’he  fact that the imaged scene is not homogeneous can introduce errors in the estimated
height. Above it was shown that for holnogcllcous scenes the phase center of t}le scattering
area coincides with tile “geometric” phase center (weighted by the volumetric scattering
density). This is no longer true for illholnogeneous scenes: sidelobes from a bright, part of
the scellc may leak into darker parts, tlius shifting the phase center and induci]lg errors in
the estimated angular elevatio]l  of the imaged cell. In Appendix C we show that, when o]le
call  arrange that 2dk = –Kr, the height error induced is given by < z >, i.e. the mean
height of all scatterers contributing to a resolution cell weighted by the power they leak into
the resolui,ion  cell. This simple result is due to the fact that, for 26k = –K,, two nearby
points  will differ in i~lterfcrolnctric.  phase only if they differ in height. This is not true in

general since the interferometric  phase is a function of look angle and nearby points will

have diflcreni, phases, even if they arc at the salne height. In this section, wc treat the
heig}lt  and position errors for the general case.

A simp]c  estimate of the measuremclkt error for an arbitrary distribution of targets is not
available in the general case. Sine.c typical scenes vary mostly in the horizontal direction,
wc restrict ourselves to an illhomogencous  distribution of scatterers in a plane to obtain  an

estimate for the magnitude of the position error. l’rom the results derived above, one has
that the deviation in the interferometric  phase is

(31)

(32)

IIcrc P z WW* is the point-target response in t}lc power domain, and wc have neglected
registration errors.

Wc examine the simplified case of t}le influence of a single brig}lt  point target on an
otherwise ulliforln scene:

O(z,  y) = U(J ;- c7]c5(y  – y))($(z  –  z]). (33)

After integration, the interferometric  phase deviation is given by the phase of

~ _ ~] }’(YI sin 8, q)c+;(Kr+26k)y]  sine fl ~O}((Kr  q- 26k) sin 0, O)_—. -. (34)
O1}’(yl  sin O,zl) + aoP(O,  O)

wllcrc ~ is the two-d ilnensiona] F’ouricr transfor~n of 1’. Using F(O, O) = 1 and assuming
that I’(y,  O) is symmetric and therefore ~(kv, O) is real, and defining the power of the point
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target response multiplied by the ratio of the cross-section of the
the background as the “weighted contrast”:

}’(Y sine, Z)
ul(y sin 0, z) = 47r2–-u}  . . . . . ~----- —___ .._

qslrlo p(& + zfi~,())’

we obtain the illt. erferomctric  phase deviation as

[

sin((~r  4- 2f5k)yl  sin (1)
60 = tan-l —---- ----T- -. ---- ------ ---

lf)-”l(yl S]n O, Z]) + COS((K, -t z~~)yl

bright target to that of

(35)

–1sin 0) “
(36)

in a side-looking geometry, the height and position errors are

sat
6}6 == = Cos e and tiy = 6h/ tan 0,

K’r
(37)

respectively. When Kry << 1, so for nearby brig}lt  targets such that w(y sin 8, z) >> 1 the
IJositiollillg  errors are approxilnate]y:

(38)

which has a simple geometric interpretation. IIcfille  the “phase center” seen by the radar
as the aim point weighted by the nearby bright target:

(39)

‘1’his function illterpo]ates  slnoothly  between  yl,  the location of the bright target (w > 1),
to zero, t}le geolnetric  center of the resolution cell (w << 1). ‘l’lie  height measured by the
radar is }L = 11 – r COSO, where 11 is the altitude of t}le radar and r is the range to the
target. Theu  6}L = r sin 9df3,  q’he projection of the displacement of the phase center onto a
line perJJendicular  to the look direction is yP cos O = T66, and we have recovered ( 38 ).

l’he heig}lt  and cross-track errors computed frorq ( 36 ) corresponding to a single bright
point target (40 d]] above the surrounding terrain) and a sidelooking geometry are plotted
in Fig. 8a and b, respectively for a point-target response with a half-cosine range-weighting.

q’he rapid oscillations in the error with range separation from the bright target correspond
to the oscillations in the point-target response. The magnitude of the maximum height error
as a function of the contrast between the bright target and nearby dim targets is plotted in
l’ig. 8c. As the brightness of the target increases, the distance from t}le target at which the
ll~axilnum height error is incurred increases up to a :naximum  height error corresponding
to a phase deviation of T radians.

‘1’hc  contrast-induced height errors for an extract of a typical rural 1’OPSAR  image
have bccll computed and plotted ilL Fig. 9. in this case, most of the errors are below the
height noise of the image, with the exception of the bright patch to the left of center. The

+3 meter deviations introduced by this group of bright targets appears to be consistent
with the interferornetric  height map derived from this SAR ilnage.

12



7. Tropospheric Effects

III the following analysis, we assume that the troposphere is a stratified medium. Earth
curvature cflec.ts,  which Inay be included with a small additional eflort,  but which do not
significantly alter the results, will be negle.ctcd. With these assulnptions,  the index of
refraction n can he mode]cd as

n(z) = 1 + 6(Z) (40)

where 6(z) represents the variation of the index of refraction with height and is typically of
order  10–4. AT\ example of this type of mode] is the Central Radio Propagation laboratory
(Cl’]{],) (IIOW  NOAA) exponential reference atmosphere [1 O] which is given by

n(z) = 1 + ac-*/JI (41)

where the conventional values for a and 11 are taken  to be 3,13 x 10–4 and 6.949 km,
rcs}jcctivcly,  whml h is the }Icight above sea level.

111 Appendix E we show that the relationship between the geometric range r and the
pat]l distance f is

[ - ‘ ‘[(+)’-]]]F=l’ 146--3(76 (42)

where ~ and cr~, correspond to the llciglkt-del)elldel~t  mean and variance of the variations
of the index of refraction, rcspcctivcly. ‘J’lICSC two qual~titics  are functions of the heig}lt
diflcrcmcc  between  the scatterer and the receiver, Ah, and the height of t}le scatterer above
sea level, ho. l’igure 10 presents the variation of ~ as a function of Ah/}1 for varying
ILo and the Cl’]{], mode l . Notice that this quantity varies with height and approaches

m-o  exponentially and that there can be a si.gllificant  variation if the height of the scatterer
clanges by a large percent of the atmospheric scale height. The lnSAR  errors are dominated
by fluctuations ill this quantity.

‘1’o get an estimate of the order of magnitude of the second order quantities, l’igure 11
~)resellts  the tropospheric variance for the Cl’}{I,  model, normalized by a2. As can be seen,

this quantity is always smaller tlian  w 7 x 10 -2, and the peak value occurs at approximately
lL/lf = 3, which, for the CPR1, model corresponds to a height of approximately 21 km. For
typical airplane altitudes between 7 and 14 km, it varies approximately between 3 x 10-2 to

6 x 10-2. Figure 12 presents the variation of the factor ~a~tan26 for incidence angles varying
from 20 to 80 degrees, in 10 degree steps. Assuming that a2 N 10-7, this implies that the
peak fractional difference varies approximately Letween 10-9 to 10-7 froln 20 to 80 degrees.

l’or a slant range of 15 km, this corresponds to a difference between 0.015111111 to 1.5nlm.
‘l’l[is becomes approximately one order of magnitude larger for spaceborne platforms. Thus,
the effects due to departures froln a straight line path and variations in the speed of light

inside the medium are extremely small.

13
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one may solve for the geometric range  in terms  of the electromagnetic range. To second
order in 8, the result is

‘= ;. L-”:2’[(ihT~i (43)

Notice that this equation involves the height above the target, AlL,  and t}lc height of the
target above sea level, which are not known a priori. l’igure 10 shows that, a 10% variation
in ho/}f  corresponds roughly to a 10% variation in d, which implies a w 10-5 variation
i]] the average speed of light. Assulning  a 15k1n  range, this produces a range error 011 the
order  of 15cm, which is adequate for most topographic applications. If greater accuracy is
desired, or if t}ie surface height is known to lesser  accuracy, it is necessary to iterate the
tol)Ogra})hiC  CStilnatiO1l  prOCeSS  to Obtaill  better CstilnateS for }10.

l’rom equation ( 2 ), the effect of the troposphere on the ]Joppler  frequency is equivalent
to replacing the wavcnumher  by an cfi’cctive  wavcnumber

lJsing the results derived above, one gets

(44)

(45)

Again, thin-c is a first order  eflect due to the average speed of light in the mediuln,  and
a second order term due to ray bending and differential delays. ~’he change hl ])oppler
frcqucltcy dcpmlds, to first order,  on the }Ieigbt  of the target above sea level. q’herefore, to
get an exact solution, an iterative approach is necessary. }Iowever,  for most applications,
takilig  a reference height may be su~cient.

Assuming that the interferomctric  antennas are located at a heights h and h i 6h,
the electromagnetic path length to tile second antenna as a function of the corresponding
geometric distance r_ is given by

(46)

where wc have assumed that the atxnospllere at the receiver is so tenuous that OI)C can
approxi~nate  $(h + dh) x i(h) + Ngp.

lJsing this result, the interferometric,  phase call be approximated by

+ ‘-k(”+-’-)[l+a+ (+(”i”i Sccv)]+ ~,- (.@)g
Wc see that
the ])oppler

(47)

the changes in the interferometric  phase arc almost identical to the changes in
frequency (modulo  factors proportional to (11/h)  2), and t}le comments made

14
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above apply M well, IIowever,  these  expressions now invohe  an additional t mm which is
proportional to the fractional change in the speed of light due to t}~e fact that the two
ante] l]las are not located at the same height. At first sight, this term lnight appear to be
neg]cgib]e.  IIowcver,  since it is multiplied by a ]argc factor of kT’, this is not always the
case. O]ie can rewrite the derivative ter]n as

(48)

Vigurc 13 presents a graph of (6(L)- $)/rL for the ~PRl, model atmosphere (solid line). It can

be seen that, because the factor kr’ is typically on t}le order of 106 for airborne situations,
one cannot ignore the additional term in estimating the interferometric  p}~ase  since it is of
tllc same order of magnitude as tile effect of the speed of light. ‘1’hc  dashed line is a plot
of --j/cL, which describes the bc}iaviour  of the derivative for }L/lf > 3. On the other hand,
for h/n <3, as is the case for most airhornes  situations, the local index of refraction plays
all ilnportant  role in determining the value of the derivative. In a turbulent atmosphere, or
near the envelope of the airplane, this quantity may fluctuate significantly from its model
prediction. ‘J’he dash-dotted lines in l’igure 13 represent the effect of a 10% variation of
t}lc local index of refraction on the derivative term, As can be seen, while the effect is
perceptible, the difference is an order of magnitude smaller than the mode] correction term.

OJIC concludes that making a correction to t}le interfcrornetric  phase based on a mode]
at]nos~)}lere  is good to order d, and that atmosp]leric  turbulence will introduce effects to
order 62 or higher.

C;ivc]l  F+, F_, @, and jl), using the relationship F* = 74 }~/2 together with equations (

43 ), ( 45 ), and ( 46 ), one can solve equations ( 5 ) and ( 6 ) exactly (assuming a value of
~L) to obtain  il . l; and ii . T7, although this involves solving a cubic equation, Hy enforcing
tile condition that ii be a unit vector, onc call  then solve for it and obtain a solution fc)r the
IIcight  of the taTgct by using equation  ( 4 ). ‘1’he equations can then be iterated to obtain
IIigher accuracy. IIowcvcr,  given the fact that the errors are dominated by uncertainties in
tllc speed of light, this may be unncccssari]y  complicated. A simpler procedure, if the target
height is k]lown to an adequate accuracy, is to assume no?niua]  values  for T+, IL and for fl. ~~
in the second order terms, and to solve the equations without iterations. The solution is

thml identical to the solution neglecting the troposphere, the only diflemmce  being  that
tile wavcnumber  is scaled with a factor which may depend on the angle of incidence, and

an additional correction must be app]icd  whc]l the baseline is not horizontal. If additional
accuracy is required, Ah is estimated from a first iteration of the topographic map, and froln
this estimate a value for dk, the error in the wavenumber,  is derived. l’inally,  a correctio]l
is lnacle  to t}lc map heights and locations using equation ( 12 ) to estimate the correction
vector.

15
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8. Conclusions

We have presented a systematic evaluation of the error sources for an airborne interfer-

ometric  system and derived formulas for the sensitivity of the interferometric  positioning
error to cac.h source. The most important consequences c)f these analyses can be summarized
as follows:

1. in orclcr  to mini~nizc  various lnSAlt errors, it is advantageous to place the intcrfero-
metric  baseline as perpendicular as possible to the look direction.

2. To reduce  positioning errors, it is advantageous to p]acc the look direction, the baseline
direction, and the vertical axis on the same plane.

3. ‘J’o reduce phase noise and leakage due to scellc contrast, oue must usc a two-frequency
system such as the one proposed by Gate]li et al . [1].

4. It is necessary to make corrections to both the IIopp]er  frequency and the interfero-

metric phasre  to account for delays due to tropospheric propagation. However, if the
surface height is kllowlL  to adequate accuracy, these corrections arc simple to incorpo-

rate into the standard lnSAR  processing scheme, l’he largest effect will be accounted
for lncrely by using the average speed of light in the medium.

Appendix A

IIltcrfcrolnctric  %nsitivitics
Phase Sensitivity:

]f onc decomposes the baseline into a component, 1~11, parallel  to the velocity direction,
0, and a component, }~1 = (1 – fii) . }; perpendicular to it, then from equation ( 11 ) and
equatiou  ( 5 ), one has

(49)

where @ is a unit vector perpendicular to fi and defined by ~ = 1~1 /l~l.. Defining a last.
unit vector ~ = @ x r?, the component of the position error alo]lg this direction due to a
phase error can be obtained by using cquatioll  ( 8 )

Baseline Sensitivity

11’To)n equation ( 5 ) one }Ias that, in the prcse]lcc  of lmsclinc  errors,

16
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Since baseline errors are independent of velocity, one deduces from this equation that

6il” i’) =- o

Finally, using equation ( 8 ) one has again

(52)

(53)

(54)

From equation (

Also, from equation

11 )
~it * = _fL fi-

(55)
v

( 51 ), one has

6fi.};=l)lp.di+ljlli.6fi=o (56)

Together with equation ( 11 ), this implies

‘1’he final colnpm~ent  is obtained by using equation ( 8 )

(57)

(58)

Notice that, as expected, the only part of the baseline and velocity errors which matter
are the component of the errors in the ii direction.

Wavenurnber  Sensitivity
l’rom equation ( 6 ), it follows that

m;=-+
Similarly, from equation ( 5 ), it follows that

Finally, using equation ( 8 ),

17
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‘1’he  previous equations may be summarized in OIIe vector equation. IMlning  t}lc unit
.-,

vector along the baseline direction as b = }1/1), one can write the position error as

(62)

Appendix B

(~) (~) ] <by a set of N], pairs of SAN returns, v+ , ti_ , __Model  the interfcrornetric  signal
k ~ N],, where elements in the pair represent the voltage returns from the same resolution
clclnellt viewed by each of the InSAR  antennas. We assume the signal has the following

correlation properties:

(Vyvf’)) =- fik,(l’k +  N) (63)

(V!%:(l))  =  ti~,(}’~ + N) (64)

(vy)ti:(~))  = 6k@k.G@) (65)

where l)k is the signal power, N is the thermal noise power, O ~ TGk s 1, and @ is the
illterferometric  phase, which is the parameter to be estimated. Notice that it is assumed
that the interferometric  phase 0 is the same for all signal pairs. I’his implies that the
resolutio]l elements to be averaged have the salne height and are located along isophase
lillm (whic]l correspond to the along track direction for a flat surface). Notice also that
tllc lnean power is allowed to vary from resolution elelnent to resolution element, as is the

magnitude of the field correlation coefllcient. ‘J’his  allows for the possibility of averaging
different resolution elelnent,s whose intrinsic bright]iess and intrinsic roughness may not be

the same. In this case, the upper index labels the resolution element. On the other hand,
one may gain independent samples by overlaying indepculdent  looks of the same resolution
element,. III this case, the upper index labels the independent looks, and l’~ and ~Gk are

constant from look to look.
‘1’lle  correlation coefficient  for ally illterferometric  pair (k = 1) is given by

])dlle xk as

Xk = ( 4 ) ,  v!kjc~’(v:(k), ~:(k))~’

[&\2  + ]~~k)l’ -  ~@-i@#)@k) _— _—— ———-— — ..—. —. .._. ______—
(])k +  N)(]  - ~:)-

(66)

(67)

(68)
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whclw (/k (k) and V(k). ])efinca]so‘--1 is the irlversc of the correlation matrix for v+

N1,
~.~~k (69)

k=]

After  all these definitions, we are ready  to prove the main result of this Appendix:
‘N1’), V!V) [0) be a conditional probability function forLemma: Let ~(v$),  v!), . . . . v+

the illterferolneteric  observations given the illterferolneteric  phase difference @. If

1. the oIlly dependelice  of j on @ is through a function of x

2. / is a strictly monotonically decreasing function of x

the maxi~num  likelihood estimator for @ is given by

[

( k )  x(k)

$ = Arg ~ — -~~flu--—---
,=, (1’k + N)(I - ‘y/) 1 (70)

l’or the case in which all the pixel pairs have the same statistics, this reduces to

whic}l is the estimator used by l,i and ~;oldstein  [2].
I’roofi ‘J’he Inaxilnun] likelihood estimate for @ is given by solving the equation

(71)

(72)

provided ~ is a maximuln  (]lot  a, minilnum)  at this point. Because of assumption (]), this
CaII be written  as

(98f - . .  X=o
ax 8*

(73)

l’ro]n assumptions (2), and since ~ is a pdf  and x is a biquadratic  forln (which implies
x = O iff [v~)12 = [v!k)12 = O Vk, which is not au interesting case since it ilnp]ies  the
absence  of a return sig]lal), this condition reduces to

‘J’his  is easily solved for & to obtain

(74)

(75)
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in the case where all i,lle  pixel pairs have the same statistics, this reduces to

(76)

wllic.h  is t}le promised result. IIuc to speckle, the mean power cannot be determined for
individual pixels, and, in practice, one always assumes that all the pixels in a multi-look
ilna.gc  IIavc the same statistics. IT} this case, the last formula is the correct one to apply,
llowevcr,  if c~lough looks are takel[, or if u priori  information exists, one may be able to
Ina.kc use of the previous formula.

‘J’he two relcvalLt  pdf’s for radar scattering speckle arc the circular Gaussian

a.lld the lnultivariate  K distribution [9]

j=, . ___.] ----- i?~)-:+a’’x:!’-’.  a(~;x)~;x)
(27r)2[c[’N 2@ ’1 ’(cr)

(77)

(78)

It is well known that bot}i of i,llcse distributions satisfy the co~lditions required by the
lmnma.

As an illtcrcsting  consequence of this result, one can derive the asymptotic value of
the estimated phase standard deviation if the return voltage signal is circular Gaussian
distributed. It is well known [11] that a maxilnum  likelihood estimator approaches the
G-alncr-1{.a.o bound asymptotically and its variance is given by

var(~)  = -N~j (79)

where  J is defined by

(~) (Ql@)) (80)J = –(~ln f(v+. ,v_

If the pixel pair statistics are uniform over the scene, then J is easily computed. ‘IThe filla,l
result for the estimated phase standard deviation, O., is given by the simple formula

o@ = --!_._. fi-”- “+2
@T7-

(81)

Notice that, strictly speaking, these equations apply to the unwrapped phase; i.e. the 27r
al[~l)iguity  ill the phase estimation is assulncd to have been re~noved. When this ambiguity
is still present, t}~c phase noise standard deviation will saturate as the phase bccolnes
uniformly distributed in the il]tervd  [0, 2x], ISquation  ( 81 ) applies when a~ << n, which

is the norlnal  situatio]l  in interferometry,
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Appendix C

When 2fik = –K,  and for zero slopes, one may rewrite equation ( 18 ) using equa-
tion ( 20 ) as

<V+ v:> = lA\2 exp [-M+  A] exp [- i26krO]
/

(kc dy dz O()(x, y, .?)exp[-ilczz]

W~. (ro + A/2 - T+) W~(ro  - A/2+ 6, – r~,zo+ ii. – x) (82)

where, aside froln the exponential, all the terms inside the integral are real functions. IIellce
it follows that, if all the scatterers are in a z =- zo constant plane, the only contribution
to the intcu-ferometric  phase is a constant phase factor exp [i~zzo], which corrects the phase
diflcrcvlcc  for the geometric height shift in the scatterers. Notice t}iat there is no phase

contribution due to a relative misalignment of the two point target response functions.
in typical hlterferometric  applications, one has that KZZ <1 and one may approximate

Cxp [—iKzz] R 1 — iKz-z . ITI this case, one can derive a silnplc  and intuitive formula for the
additional phase shift due to an arbitrary scatterer distribution. For small phase errors, 15@
is approximately given by the ratio of the imaginary to the real parts of the integral above.
A simple calculation shows that this is given by

whcm < z > is the average }lcight  of all the scatterers weighted by their magnitude and the
magllitude  of their contribution to the resolution cell; i.e.,

Appendix D

Assume that the ptr is separable into range and cross-range components, that misregis-
tration errors and slopes can be neglected, and that the two ptr’s  are identical. Under these
circumstances, using equations ( 27 ) and ( 28 ), one can write the geometric correlation as

ffK li’(K -- (:, + 26k))ti(K)
7G(fi,  & + 26k) = ~— . . . . . . ..-.

f~~ Ii’’(K) ‘-
(85)

We seek the function 1? which maximizes -yG, given a certain bandwidth: i.e. W = O for
IKI > AK/2. ‘1’aking  the first variation of 7G, and setting it to zero, one obtains the following
condition for the optimal weighting function inside the interval  [- AK/2, AK/2]

ti(K – (Kr + 26k)) + ti’(K i (KT 4 26k)) -- 2-yc;(~,  K, + 2fik)ti(K)  = O (86)
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“1’his is a nonlinear delayed difference equation, which we have not been able to solve ana-
lytically, Notice however, that C1OSC to the optimum solution 67G/6fiT  = O, and the optimal
c.orrclation, ~G, is approximately indepelldent  of ~. When KT +2fik  << AK, one can expand

~ in powers of K. -t Zdk in equation ( 86 ) to obtain  the following  differential equation,
valid to second order in the expansion paralneter

(K, +- 2M)’W’(K) +- 2 [1 -~] W(K)= o (87)

lJsing the boundary conditions mentioned above and normalizing the peak of the weighting
function to 1, the optimal solution is given by

[1ti(K) = COS % (88)

(89)

While equation ( 86 ) canllot  be solved analytically, it can be solved numerically by
iteration. The numerical optimal solutions consist of discrete frequency bands modulated
by a cosine function (which need not be zero at the edges of the bandwith). For spectral
overlaps greater than approximately 0.9, the numerical solutions and correlation coefhcients
agree very well with the results quoted above. }Iowever,  while the numerical solutions do
Inaximize the correlation function, due to the prescllce of discrete frequency bands, the
resultant point tar,get responses for spectral overlaps smaller than 0.9 tend to have very
large sidelobes , which degrade the resolution to unacceptable levels, As a compromise
solution, wc seek a weighting function of the form

[1W(k-) = Cos + (90)

and obtain a by optimizing 7G llU1neriCally.  The  resultant VZdUCS of a as a function of the
sI)ectral overlap are presented in l’igure 14. As can be seen, the optimal spectral window
transitions from the solution obtained above for large spectral overlaps to an unweighed
solution whe]l  the spectra] overlap is smaller than about 0.5. in F’igure 3, we present the

geometric correlation function for several weighting functions, including, in addition, the
popular }Iamming  and Harming weighting functions. As can be seen, for large spectral
overlaps, the use of a weighting function can significantly increase the correlation, while no
weighting is preferable for smaller spectral ovelaps. Notice also that the optimal window
proposed here has a resulting (unnorlnalized)  point target response given by

‘(’)=si)’c(%-a + ‘i’’c(%+a (91)

whose Rayleigh (peak-to-null) resolution can be shown to be given approximately by 2T(I +

0.4(a2--  a3)+a4/2)/AR s 2TR(ti)/AK. This itnplics  a degradation in resolution by a factor
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of (1 +- a/2)  relative to the unweightcd  response. ‘I’his level of degradation is smaller than
that rwsoluting  from using either IIamming  or IIanning  weighting, since these two weighting

functions have a smaller effective bandwidth than the simple cosine function considered here.

Appendix E

A straightforward application of Snell’s  law results in the following two expressions for
tllc gco]nctric  iylcidcncc  angle O and the clcctromagnctic  path length, i, as a function of the
height of the platform, h, the inc.idcnce  angle of the propagating ray at the platform, 00,

a~ld the index of refraction at the platform, 7to:

/

sin 00 h
tan 9 = – -—

(7@/ll(z))
dz-–..= -.====.-=======--==.

+ -  (m/T~(z))2siI,2~o
(92)

Ah ho

It is useful to break up the clcctromagnctic  path ]cngth into two pieces: TC, the geometric

lcllgth of the curved path followed by the ray; and Td, the additional delay duc to the fact
that the speed of light in the atmosphere is lower than the speed of light irl vacuo . ‘1’hcse
two quantities are given by

(94)

‘J’hc geometric length diflcrs from the true range only when there is a gradient in the index
of refraction and the incidence angle is different from zero; however, the delay length is
prcscl)t even when no ray bending occurs, as is the case of nadir looking altimeters.

q’hc previous equations can bc integrated analytically for a few atmospheric pr-ofilcs,
such as the (3P RI, profile. ]nstcad  of specializing to a specific profile, these equations can
bc integrated in general by expanding in powers of d. The results are series in terms of
the moments of the variations in the index of refraction. IIere,  terms of order 83 and

higher will bc ncglcctcd.  This is justified given the magnitude of 8, and given the fact that
fluctuations about any given “standard” profile will bc larger than this amount. Given this

al)proximation,  the integrations yield the following ex~)ressions

(96)

(97)

Td = Ah SCC8 [f(l) - tan2 if(’)] (98)
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where j(n) is the nt}l moment of the variations of the refractive index

!

h

/(n)=;j ~. dz (5n(z) (99)

Ah = h- ho,and ~ is the incidence angle at infinity, which is defined by sin ~ = no sin O.. We
will also use the abbreviations ~ E j(l) and u; z ~(2) – ~2, corresponding to the mean and

variance of the variations of the index of refraction, both of which are functions of height.
Notice that equations ( 96 ), ( 97 ), and ( 98 ) predict that the change in incidcncc

angle and range relative to the straight lillc  path are first order in 6, and “thus potentially
large for large incidence angles and ranges. IIowevcr, it is not these quantities that are
of releva,tlce  to the location of the target. Rather, it is the geometric range and incidence
angles to the target which are important, ITI this appendix, equations ( 96 ), ( 97 ), and
( 98 ) are inverted (to second order in 8) to obtain a solution for the geometric range as a
ful(ction of the measured range.

l~xpallding the incidence angle at infinity

~=io+til+-iz+... (100)

assulning  that ~,, is of order fin, inserting the results into equation ( 96 ), solving order by

order, and replacing the results in equations ( 97 ) and ( 98 ), one obtains the following
silnp]e  expression for the path distance as a, function of the geometric incidence angle

I’c
[

=  Ahsec  O 1 + ~ujtan20 1 (101)

rd [=  Ah SCC8  6-- U; tan2 O 1 (102)

The first equation shows that the ray curvature adds an additional distance to the propa-

gatioJI,  but  this distance is second  order  in d. ltcc,alling that scc O == T/Ah, one obtains the
relationship between the geometric range T alLd the path distance F

(103)

‘1’his result  shows that the difference between the geolnetric  distance and the path distance
is due to two effects: to first order, there is a constant scaling factor which accounts for the
fact that the average speed of light in the atlnosphere  is slower than the speed of light in

wicuo . 111 addition to this, there are second order corrections which are due to the increase
in path length due to ray bending, and to the variations in the speed of light in the presence
of variations in the index of refraction. IIoth second order effects are proportional to the
variance of the height dependent part of the i]ldcx of refrac.tioll.
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Figure Captions

Figure 1: lnSAR  geometry.

Figure 1: Phase standard deviation as a function of the number of looks for the simulated

results (solid line) and the maximum likelihood prediction (dashed line). ‘lThe cor-
relation coeflicicnts used were 0.99 (crosses), 0.9 (diamonds), 0,8 (squares), and 0.6

(trianglm).

Figure 3: Correlation function for different range range windows: No weighting (solid line);
half-cosine weighting (dashed line); banning weighting (dashed-dotted line); hamming
weighting (dotted line); optimum cosine weighting (small triangles).

Figure 4: l’oint target response for the TOPSAIL instrument using a range migration
processor. Note the azimuth ambiguities.

Figure 5: Correla.tioll  function  using the two-dimensional point target response for no
weighting (a) and half-cosine weighting (b). ‘l’he dashed line is the response expected
for an ideal one-dimensional unweighed point target response.

Figure 6: Phase noise relative to an unweightcd  point target response for an optima] cosine
weighting (a) and the spectral truncation method of Gatelli ct al . [I].

Figure 7: Geometric correlation c.ocfflcient  for the two frequency technique as a function
of local surface slope. The solid line is for an unweighed spectrum, the dashed line
for IIalf-cosille  weighting. I’he radar parameters are given in the text.

Figure 8: l;rrors in height (a) and positioning (b) for a single point target 40dll  brighter
than the background as a function of distance from the point target, (c) Plots the
maximum height error for varying contrast values.

Figure 9: SAR contrast image (a) for an agricultural area, including fields and two roads.
‘iThc corresponding hcigbt error is plotted in (b). A corresponding cut through the
highest contrast area is shown in (c) and (d). Notice that only contrast differences in
the azimuth direction (up-down) give rise to height errors,

Figure 10:

Figure 11:

Figure 12:

curve)

Variation of ~ as a function of h/if for the C1’IU.  model.

‘J’ropospheric  variance for the Cl’l{l, model, normalized by a2.

Variation of the factor ~ o: tanz 0 for incidence angles varying from 20 (lowest
to 80 degrees (highest curve), in 10 degree steps.
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l?igure 13: Plots of (d(h) – ~(h))/a model atmosphere (solid line) and –~(h)/a  (dashed
lillc) for the Cl’lL],, ‘1’hc  dashed-dotted lines represent the effect of a 10% variation of
the local index of refraction.

Figure 14: Optilnum  value of the parameter a for spectral weighting as a function of the
alnount  of spectral overlap.
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